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Abstract 

A number of investment strategies designed to maximise portfolio growth are 

tested on a long-run US equity data set.  The application of these growth optimal 

portfolio techniques produces impressive rates of growth, despite the fact that the 

assumptions of normality and stability that underlie the growth optimal model are 

shown to be inconsistent with the data. 

Growth optimal portfolios are constructed by rebalancing the portfolio weights of 

Dow Jones Industrial Average (DJIA) stocks each month with the aim of maximising 

portfolio growth.  These portfolios are shown to produce growth rates that are up to 

twice those of the benchmark, equally weighted, minimum variance and 15% drift 

portfolios.  The key to the success of the classic, no short-sales, growth optimal 

portfolio strategy lies in its ability to select for portfolio inclusion a small number of 

(DJIA) stocks during their high growth periods. 

The study introduces a variant of ridge regression to form the basis of one of the 

growth focussed investment strategies.  The ridge growth optimal technique 

overcomes the problem of numerically unstable portfolio weights that dogs the 

formation of short-sales allowed growth portfolios.  For the short-sales not allowed 

growth portfolio, the use of the ridge estimator produces increased asset 

diversification in the growth portfolio, while at the same time reducing the amount of 

portfolio adjustment required in rebalancing the growth portfolio from period to 

period.  
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Introduction 

The expected rate of growth in value is considered by many investors to be the 

pre-eminent characteristic of an investment portfolio.  Ways to construct portfolios 

that maximise expected growth are well documented (for example, Hakansson (1971), 

Luenberger (1998) and Hunt (2002)).  In addition Cower pioneered the application of 

elements of information theory to portfolio construction.  Cower’s so-called universal 

portfolio mimics constantly rebalanced portfolios that achieve optimal portfolio 

growth rates (See Cower (1991), Cower and Ordentlich (1996) Cross and Barron 

(2003))  

Considering the importance of expected portfolio growth to both professional and 

retail investors, it is surprising that so few examples of studies that focus on the 

empirical strategies to maximise portfolio growth exist.  This study aims to redress 

this deficiency by applying growth optimal techniques to long-run US equity data.  As 

a first step in the study, let us set out a stochastic model of asset price evolution, upon 

which the growth optimising investment strategy will be based. 

Suppose that the passage of an asset price, S, through time, t, is governed by 

geometric Brownian motion (generalised Weiner process): 

dz)t(Sdt)t(Sμ)t(dS   (1) 

where  is the rate of drift and z is a standard Weiner process.  The expected rate 

of growth of the asset, E[G], over time t, can, using Ito’s lemma, be derived as: 
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The combinatorial properties of normal random variables dictate that if the value 

of n assets follows a geometric Brownian motion, the value of a combination of these 
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assets, Sp, defined by a portfolio weights vector, w
T
 = (w1, …, wn) will also be 

characterised by geometric Brownian motion: 

dz)t(Sdt)t(Sμ)t(dS ppppP   (3) 

and will have an expected portfolio growth rate per unit of time, gp, where: 
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where is an nxn matrix of variances and covariances, and  is a vector of 

individual expected drift rates per unit of time, 
T
=(1,  … , n).  The variance of the 

growth rate, p
2
 is: 

t/T2

p wΩw  (5) 

It is evident from (4) that the rate of growth of a portfolio of assets is governed by 

the choice of the individual asset weightings, w.  Naturally, the structure of w may be 

fashioned to maximise the expected rate of growth.  The portfolio, w*, that maximises 

expected portfolio growth is referred to as the growth optimal portfolio.   

A strategy designed to maximise expected growth has an obvious and intuitive 

appeal.  Moreover, maximising expected growth has strong theoretical support.  

Consider the broad class of power utility of wealth functions: 




 W

1
)W(U   (6) 

The recursive nature of a utility function such as (6) means that the problem of 

maximisation of expected utility of wealth after n periods, Wn, reduces to a myopic 

strategy of the maximisation of wealth over one period, W1. Further, if  is small, the 

expected value of power utility E[U(W)] is closely approximated by: 
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Thus, when is small, it follows that the only two variables of interest in the 

quest to maximise expected utility of n period wealth, are the expected growth rate 

and the variance of the growth rate.  Investors with a log utility function 

)Wln()W(U nn  , which is the limit case of (7) when 0, will choose between 

investments based solely on expected portfolio growth.  Moreover, Luenberger (1993) 

provides a broader rationale for basing portfolio choice on expected growth using so-

called tail preference theory. 

Investment techniques based on optimising expected growth have appeal to both 

theorists and practitioners as they: 

 are consistent with n period utility maximisation, 

 suggest asset diversification, 

 maximise expected terminal value of wealth and 

 minimise the expected time required for accumulated wealth to reach any 

specified threshold value. 

The theoretical attractiveness of maximal growth portfolios is clear.  What is less 

apparent is whether or not investment strategies based on growth portfolios are 

efficacious.  The aim of this paper is to examine the suitability of growth optimal 

portfolio techniques to the US equity investment environment.  

Data 

Hakansson (1971) suggested that growth optimal portfolios dominate all other 

portfolios in the long run.  While Merton and Samuleson (1974) pointed out the 

fallacy in this argument, it remains true that it is easier to identify the characteristics 
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of alternative investment portfolios when observed over a long period of time.  The 

desire to test the efficacy of growth-oriented investment led us to seek out a long-run 

US equity data set.  The study applies the growth optimal portfolio investment 

strategy techniques to 25 years of monthly data, starting in May 1977 and ending in 

April 2002. 

The data set comprised dividend-adjusted price observations on the 30 companies 

in the Dow Jones Industrial Index (DJIA).  While the growth investment strategies 

were applied to 25 years of monthly data, the study required a further 5 years of data 

in order to estimate the necessary drift and volatility parameters.  Thus the full data 

set extended from April 1972 to April 2002.
1
  Table 1 shows that only 21 of the 30 

DJIA stocks had a full set of data.  Nine DJIA stocks were included in the index after 

the commencement date of April 1972.  The statistics quoted in Table 1 were 

estimated where possible over the strategy period May 1977 to April 2002.  Otherwise 

the statistics were estimated over the period delineated by their starting date and April 

2002. 

The price data were transformed into measures of periodic growth using the 

continuous growth formula. 

)P/Pln(g 1t,it,it,i   (8) 

where Pt is the dividend-adjusted price of asset i in month t and gi,t is the growth 

of asset i in month t.
2
 

Table 1 displays annualised statistics on rates of growth, drift and volatility of 

growth for the 30 companies included in the data set.  The annual rate of growth of 

asset i, iĝ , was estimated as the sample aggregate growth divided by the 25 years of 

the sample.  The estimate of the asset drift rate, ,iμ̂ , was computed as: 

2/ˆĝμ̂ 2

ii,i   (9) 
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Where 2

i̂  is the estimate of the i
th

 asset variance.  

The DJIA stocks produced some impressive growth over the 25-year period.  

Wall-Mart, Microsoft, Home Deposit and Intel produced growth rates in excess of 

20%pa over the 25n year period.  At the other end of the growth spectrum, six stocks 

recorded growth rates lower than 10%pa.  A benchmark portfolio of equally weighted 

DJIA stocks grew by 13.73%pa.  

  Table 1: Dow Jones Stocks: Descriptive Statistics 

Symbol Name  Start* Growth Drift
†
 Volatility 

AA Alcoa Inc.   12.40% 16.74% 29.43% 

AXP American Express Co. Apr-77 14.14% 18.28% 28.79% 

BA Boeing Corp.   13.31% 18.26% 31.46% 

C Citigroup Inc Jul-86 16.56% 22.76% 35.22% 

CAT Caterpilla Inc.   7.17% 11.49% 29.41% 

DD DuPont deNemours   11.91% 14.70% 23.61% 

DIS Walt Disney Co.   14.96% 19.53% 30.21% 

EK Eastman Kodak   6.00% 9.29% 25.64% 

GE General Electric Co.   13.44% 15.82% 21.81% 

GM General Motors   8.75% 12.51% 27.41% 

HD Home Deposit Aug-84 28.23% 33.38% 32.09% 

HON Honeywell International Inc.   9.70% 14.41% 30.67% 

HWP Hewlett-Packard Co. Aug-76 10.95% 17.10% 35.09% 

IBM International Business Machines    6.73% 10.24% 26.49% 

INTC Intel Corp. Jul-86 26.82% 36.98% 45.07% 

IP International Paper Co.   8.28% 12.30% 28.35% 

JNJ Johnson & Johnson Jan-77 17.44% 20.02% 22.69% 

JPM J.P.Morgan Chase & Co. Dec-83 11.92% 18.37% 35.90% 

KO Coca-Cola Co.   17.48% 19.97% 22.35% 

MCD McDonalds Corp.   13.59% 16.05% 22.18% 

MMM Minnesota Mining & Manufacture    12.90% 14.89% 19.96% 

MO Phillip Morris   15.63% 18.75% 25.00% 

MRK Merk & Co.   17.16% 19.91% 23.46% 

MSFT Microsoft Corp. Mar-86 34.42% 42.64% 40.56% 

PG Proctor & Gamble Co.   12.08% 14.54% 22.18% 

SBC SBC Communications Inc. Jul-84 14.37% 16.94% 22.66% 

T AT&T Corp.   2.23% 5.83% 26.84% 

UTX United Technologies Corp.   14.01% 17.92% 27.98% 

WMT Wal-Mart Stores Inc.   28.92% 33.13% 29.02% 

XOM Exon Mobil Corp.   10.41% 11.78% 16.60% 

Equal Equally weighted average   13.75% 15.10% 16.45% 

* Unless otherwise indicated, the stock data set starts in April 1972.  The 1972 start date was 

chosen to provide a 5-year estimation period prior to the 25 year strategy period.  However, the 

reported statistics on growth, drift and volatility statistics are estimated over the strategy period 

May 1977 to April 2002. 
† 

The stock drift constant (the  of equation (1)) was computed for each stock as the rate of 

growth plus half the variance. 
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The drift statistic, i, for each stock, i, was calculated as the stock average 

growth, gi plus half the variance, 
2
.  The figures in Table 1 show that on average the 

variance term added approximately 4%pa to the growth rates to produce the drift 

figures.  The inflation of a stock’s growth rate by a proportion of variance to produce 

a drift parameter, is at the heart of what Luenbuger ( 1998) calls “volatility pumping” 

investment strategies.  Stocks with high volatility will tend to have a high implied 

growth rate.  The inclusion of these high-drift/high-volatility stocks in a portfolio will 

have a synergistic effect, as the portfolio will capture the high-drift rates of the 

individual stocks while the high volatilities will be diversified away within in the 

portfolio. 

The five DJIA stocks with the highest rates of drift over the 25-year period were 

Microsoft, Intel, Home Deposit, Wall-Mart and Citigroup.  The five stocks with the 

lowest rates of drift were AT&T, Eastman Kodak, IBM, Caterpilla and Exon. 

Table 2 and Figure 1 contain further evidence of the relationship amongst DJIA 

stock, growth, drift and volatility.  Table 2 plots asset growth and drift against asset 

volatility for the 30 DJIA stocks.  Visual inspection of Figure 1 indicates a positive 

relationship amongst growth and drift and volatility.  Table 2 quantifies the 

relationship amongst the three variables of growth, drift and volatility for the 30 

stocks via classical correlation and rank correlation statistics.   
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Figure 1: Growth and Drift versus Volatility 
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Table 2 shows that, as expected, the relationship between growth and volatility is 

positive.  The strongest relationship amongst the three variables exists between 

growth and drift.  The drift statistic for each asset is computed as a combination of the 

asset growth and volatility statistics.  Asset growth contributes, on average, 

approximately 80% to the value of the drift statistic, so it is not surprising that growth 

and drift are highly correlated.  The 20%, on average, contribution of volatility to the 

drift statistic accounts for the mid-range correlation and rank correlation between drift 

and volatility. 
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Table 2: Growth, Drift and Volatility 

Correlation 

Correlations 

 Drift Volatility 

Growth 0.9795 0.4455 

Drift  0.6147 

   

Rank correlations 

 Drift Volatility 

Growth 0.9439 0.1671 

Drift  0.4211 

Testing the Assumptions of the Growth Model  

There are a number of assumptions implicit in the model of growth upon which 

the investment strategies tested in this paper are based.  Most obviously, the Weiner 

process of equation (1) assumes investment returns are normally distributed.  Possibly 

less obvious is the model’s reliance on the stability of stochastic process parameters 

of  and .  The degree to which these assumptions are consistent with the features of 

the historical data set ought to provide a guide to the likely success or otherwise of 

growth optimal investment strategies. 

Normality 

The 30 companies and the benchmark equally weighted portfolio were tested for 

normality of returns with the results recorded in Table 3.  Three tests of normality, 

based on skewness and kurtosis measures, were applied to the data set.  The results of 

these tests reveal that the periodic growth rates were far from normally distributed.   

Twenty of the 30 stocks displayed significant skewness at the 5% level at least.  

In addition, only four of the 30 stocks had returns that were not significantly 

leptokurtic.  Predictably, the Jacque-Berra statistic, which jointly tests for skewness 

and kurtosis, rejected normality for the large majority of stocks (26 cases). 
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Table 3: Tests of Normality
3
 and Stability 

Symbol Skewness Kurtosis J-B  ANOVA Kruksal Wallis Var Ratio 

AA 0.07      2.45  **  30.94 ** 0.19    1.48    3.52 ** 

AXP -0.88  **  2.73  **  72.85 ** 1.08    3.56    2.74 *  

BA -0.24      2.44  **  33.37 ** 0.63    0.82    3.89 ** 

C -0.99  **  3.11  **  87.40 ** 1.26    1.69    2.31    

CAT -0.43  **  1.83  **  31.99 ** 0.81    5.28    1.82    

DD -0.28  *   0.57  *   10.96 ** 1.30    3.49    2.33    

DIS -0.39  **  1.67  **  28.41 ** 0.80    3.51    3.12 *  

EK -0.95  **  4.48  **  101.54 ** 1.65    4.04    2.72 *  

GE -0.19      0.85  **  12.45 ** 0.97    5.07    3.11 *  

GM -0.48  **  1.92  **  35.33 ** 0.39    1.48    3.36 ** 

HD -0.40  **  0.91  **  19.28 ** 1.77    6.02    2.42 *  

HON -0.78  **  5.10  **  94.12 ** 0.50    1.06    6.32 ** 

HWP -0.35  *   1.28  **  21.99 ** 0.64    1.78    3.22 *  

IBM -0.09      1.04  **  13.33 ** 1.07    4.49    4.01 ** 

INTC -0.76  **  2.33  **  58.39 ** 1.48    1.65    2.73 *  

IP -0.14      1.05  **  14.10 ** 0.65    2.93    3.51 ** 

JNJ -0.27      0.10      4.70    0.05    0.12    1.58    

JPM -0.75  **  2.31  **  56.88 ** 0.36    0.37    4.89 ** 

KO -0.39  **  1.08  **  21.11 ** 2.60 *  9.80 *  3.68 ** 

MCD -0.28  *   -0.19      1.57    0.84    2.53    2.25    

MMM -0.42  **  4.14  **  60.76 ** 0.52    3.46    2.72 *  

MO -0.52  **  1.94  **  37.83 ** 0.69    2.21    2.47 *  

MRK -0.22      0.25      5.55    1.04    4.73    2.40 *  

MSFT -0.07      1.18  **  14.98 ** 0.80    2.08    3.09 *  

PG -1.21  **  7.49  **  166.50 ** 0.54    3.93    3.70 ** 

SBC -0.37  **  0.82  **  17.12 ** 0.45    1.11    4.42 ** 

T -0.49  **  3.70  **  58.44 ** 0.50    2.77    12.97 ** 

UTX -1.35  **  6.72  **  175.07 ** 0.49    3.22    4.72 ** 

WMT -0.16      0.96  **  13.18 ** 1.74    6.12    2.31    

XOM 0.13      0.48      6.80    1.15    3.47    2.33    

Equal -0.91  **  4.65  **  99.83 ** 0.98    3.80    4.01 ** 

* Indicates significance at the 5% level,  ** indicates significance at the 1% level 
†
 The kurtosis figure displayed was computed using Excel’s KURT() function and is equal to the traditional 

measure of kurtosis less 3. 

 

The results of the analysis of skewness and kurtosis allow us to confidently 

conclude that the data upon which we are to test the growth optimal portfolio 

strategies are largely non-normal.  Exactly how the non-normality will impinge upon 

the investment results is problematical, as the effect that skewness and excess kurtosis 

will have on the growth of portfolios designed under an assumption of normality is 

not immediately apparent.  The question of the stability of the stock’s distributional 

statistics over time is perhaps more important than the actual values of those statistics. 
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Serial Stability 

The expected growth rate for each stock, the variance of that growth rate and the 

covariances between each stock’s growth rate are essential inputs to the process of 

determining growth optimal portfolio weights.  The growth optimal strategies 

implemented in this study rely on the stability of the input parameter estimates.  Thus 

any serial instability in these input parameters will imperil the success of any 

investment strategy based on an assumption of parameter constancy.  

Figure 2: Equally weighted portfolio: sub-period growth, drift and volatility 
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Figure 2 plots estimates of the average growth, drift and volatility, for a portfolio 

of equally weighted DJIA stocks over five equal sub-periods that make up the overall 

data-set period.   

Casual analysis of the range of sub-period growth estimates suggests parameter 

instability.  Sub-period growth ranges from a low of 6.45% in 1977-82 to a high of 

24.47%pa in 1982-87.  However, the result of applying formal tests for instability of 

the mean of growth for the individual stocks does not lead to the conclusion that these 

are unstable.  Analysis of variances indicates instability in only one of the stocks, KO.  
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The Analysis of Variance results accord with the results of the Kruksal-Wallis test, 

which is the more suitable test given the non-normality of the data.  The hypothesis of 

constancy of growth rates in all five sub-periods has been rejected for only KO. 

The proposition that variance of growth rates is identical in each of the 5 sub-

periods, was checked by using Hartley’s test for homogeneity of variance (see 

Berenson and Levine (1992)).  The ratio of the largest sub-period variance to the 

smallest sub-period variance, which is the key statistic in Hartley’s test, is displayed 

in Table 2.  Hartley’s test indicates that the presence of serial instability of variance of 

growth rates exists in many of the sample stocks.  The null hypothesis of equality of 

sub-period was rejected, at the 5% level at least, for 23 of the 30 companies.   

While the variance for each stock is an input variable used to compute growth 

optimal portfolios, it is, however, the full covariance matrix that is the essential input 

item, and the variances represent only a small proportion of the larger covariance 

matrix.  However, the preceding evidence of variance instability justified further 

research to ascertain whether the variance instability was also mirrored in covariance 

instability.   

A test of the hypothesis of equality of sub-period covariance matrices employs 

the Box’s M statistic, where: 




m

1i
is

m

1i

lnnlnnM ΩΩ  (10) 

where m is the number of sub-periods; n = m ns is number of observations in the 

full sample; ns is the number of observations in each sub-period; || is the determinant 

of the overall, p-dimensioned, covariance matrices; and |i| is the determinant of the 

i
th

 sub-period covariance matrix.  Pearson (1969) shows that for large p, M is 

distributed as Ff1,f2 .
4
  The sample M/b was computed as 3.58.  This is to be compared 
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to the 1% critical F of 1.07.  Hence, it must be concluded that the sample data 

covariance matrix is not stationary. 

The preceding results do not allow much scope for optimism as to the successful 

application of an investment technique based on growth optimal portfolios.  This 

technique relies on an assumption of normality of period-by-period growth rates, as 

well as an implicit assumption of the stability of the distributional parameters 

contained within the expected growth rates and the covariance matrix of growth rates.  

Contrary to these assumptions, the analysis has shown that the DJIA stocks’ data are 

leptokurtic and somewhat skewed, and are characterised by a non-stationary 

covariance matrix.  However, the facts of the situation notwithstanding, we proceeded 

to test the efficacy of growth optimal portfolio investment techniques applied to the 

DJIA stock data. 

Application of Growth Optimal Portfolio Investment Techniques 

This paper attempts to test a simple, practical investment strategy based on 

portfolios selected to have maximum expected growth rate.  Testing any proposed 

investment strategy on the historical data involved stepping through each of the 300 

monthly observations on the return of the DJIA companies.  At any period, k, the 

following steps are undertaken: 

1. The data on the previous n periods are employed to provide estimates of the 

expected drift rate, i, for each DJIA stock in the sample and to estimate each 

element of the covariance matrix, i,j.  

2. The estimates of the vector of expected drift rates and covariance matrix estimates 

are used to produce growth optimal portfolio weights, wk. 

3. The return on this portfolio in the next, ie k+1, period is computed. 

4. The time-frame is moved forward one observation. 
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Steps 1 to 4 are repeated until the data set is exhausted. 

The study uses the maximum number of DJIA stocks available at any point in 

time. Twenty-one stocks were part of the index as at May 1972.  Thus, these stocks 

are included in the study for each of the 300 monthly periods.  The remaining stocks 

are included in the study as soon as is permitted by the available data.  The exact date 

of the addition of any one of the remaining nine stocks depended on the date of its 

inclusion in the DJIA and upon the length of the estimation period.  

Short-sales Allowed Portfolios 

The structure of short-sales allowed, growth optimal portfolios is extensively 

explored in Hunt (2002).
 
The GOP weights, w*, vector has the following structure: 

bμAw *  (12) 

where: 
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It is our aim to proceed through the historical data set, estimating r and , using 

these estimates to calculate the growth optimal weights, w*, and to use these weights 

to produce a set of one-step-ahead returns for each of the 300 observations in the data 

set.  The success or failure of the growth optimal investment techniques will be 

judged on the nature of the one-step-ahead returns produced by the strategy.  The 

returns on three alternative investment strategies will provide a base against which to 

measure the growth optimal techniques.   

 

These benchmark portfolios are: 

1. the equally weighted portfolio, 

2. the minimum variance portfolio and  
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3. the portfolio with an expected drift of 15%pa. 

The equally weighted portfolio is a simple passive investment strategy and 

represents the absolute minimum “bar” against which alternatives ought to be 

measured.  Note that performance of the equally weighted portfolio varies slightly 

with the length of the estimation period, as this determines exactly when the latest 

company additions to the DJIA become available for inclusion in the investment 

strategies.   

The minimum variance point (MVP) strategy aims to minimise portfolio variance 

regardless of the expected level of portfolio drift.  Weights for the minimum variance 

portfolio (MVP), wMVP are given by: 

ιΩι

ιΩ
bw

1T

1

MVP 



  (13) 

The final benchmark portfolio is one with an expected drift rate of 15%pa.  The 

figure of 15%, while being arbitrary, is consistent with the historical record and is in 

general accord with investors’ expectations of share market returns over a long 

period. 

The results arising from the application of the short-sales allowed growth optimal 

strategy, and application of the benchmark strategies, for parameter estimation period 

lengths of 3, 4 and 5 years, to the 25-year DJIA data set, are set out in Table 4 under 

the heading “Classical” strategies.   
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Table 4: Short-sales Allowed Portfolio Strategy Returns 

  

Equally 

weighted 
  

“Classic” strategies Ridge constant = 0.05 

MVP 15% drift Growth MVP 15% drift Growth 

Estimation period = 3 years  

Average 13.64% -0.30% 3.60% 1158.72% 12.40% 12.41% 18.40% 

Volatility 16.22% 25.17% 23.82% 5272.68% 15.39% 15.40% 33.98% 

Length 1.00 6.72 6.38 1027.54 1.04 1.18 4.15  

Estimation period = 4 years  

Average 13.51% 4.79% 5.59% 68.51% 12.58% 12.36% 20.01% 

Volatility 16.27% 18.09% 18.15% 1121.94% 15.42% 15.45% 37.32% 

Length 1.00 4.95 4.84 236.59 1.05 1.18 4.58  

Estimation period = 5 years 

Average 13.21% 6.52% 6.66% -88.48% 12.54% 12.75% 18.36% 

Volatility 16.16% 17.26% 17.01% 613.01% 15.42% 15.52% 43.07% 

Length 1.00 4.34 4.36 136.79 1.05 1.18 5.22 

 

The first notable result is the excessive volatility associated with the short-sales 

allowed “classic” growth optimal portfolio.  For example, the 3-year estimation 

period growth strategy, while exhibiting a growth rate in excess of 1000%pa, had a 

volatility in excess of 5000%pa.  An examination of the growth optimal weights 

reveals that the short-sales allowed growth portfolios have gearing ratios that any 

investor would find impractically high.  The strategy routinely required an asset to be 

short-sold more than 1000%.  So-called portfolio length provides a measure of the 

extent of gearing within a portfolio that permits short-selling.  Portfolio length, l, is 

defined as: 

)n(l T
ww  (14) 

An appreciation of the extent of gearing within a portfolio may be obtained by a 

comparison of the portfolio length of the least geared portfolio, the equally weighted 

portfolio, which has a length of unity.  The classic short-sales allowed growth 

strategies had average portfolio lengths that ranged from 136.79 to 1027.54 depending 

on the length of the estimation period.  
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Not only were the individual growth portfolio asset weights absolutely large, they 

also gyrated wildly from period to period.  The highly-geared portfolios were 

naturally characterised by high volatility of growth rates.  The root cause of the 

volatility and instability of the short-sales allowed growth portfolios lay in the near 

singularity of the covariance matrix, . 

The inverse of the covariance matrix, 
-1

, is necessary for the determination of 

the weights of the growth optimal portfolio, the MVP and the 15% drift portfolio.  

Unfortunately, a problem arises in the computation of 
-1 

due to the multi-collinear 

nature of the periodic stock growth rates.  The empirical estimates of the covariance, 

 is at times close to being singular.  The near singularity of results in the inverse 

being extremely sensitive to observations, and this in turn results in estimates of 

individual stock weights, w*i,
 
that gyrate wildly from observation to observation.   

It is worth noting that the individual asset weights in an minimum variance 

portfolio can be interpreted as restricted least squares coefficients estimates.  Now the 

ridge regression technique has long been employed to provide a solution to multi-

collinearity in regression analysis.
5
  The use of a ridge regression in portfolio 

construction can also be viewed from a Bayesian perspective.  It is equivalent to 

employing a prior distribution of equal asset weights with constant variance.  Our 

replacement of  with an amended covariance matrix, +, where: 

Id , d is a scalar, and I is the identity matrix (15) 

in the process of forming optimal portfolio weights, provides a solution to the multi-

collinearity problem similar to that of ridge regression.   

The use of a non-zero d in equation (15) produces “biased” estimates of the 

growth optimal portfolio and the benchmark portfolios.  As the pivot, d, increases, the 

ridge estimate of growth optimal portfolio weights, w+*, is biased away from the 
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classic growth optimal portfolio weights towards those of the equally weighted 

portfolio.  That is, in the limit, w+
* 
= 1/n., where n is the number of assets in the set.  

In other words, the ridge estimator produces weights that are a combination of the 

classic estimator weights and those of the equally weighted portfolio.   

A decision to use a ridge estimator necessarily requires a particular value for d.  

Unfortunately, there is no commonly accepted method for objectively selecting a 

value for d.  A common approach in ridge regression analysis is to choose a value for 

d that provides “stabilised” estimates of the system parameters.  After some 

experimentation, a figure of 5% was settled upon as a suitable value for d.  Table 4 

shows that the use of d = 0.05 reduced the average length of the of weights vector by 

between 95% and 99% depending on the length of the estimation period. 

The results of applying the MVP, the 15% drift and the growth optimal strategy, 

with the ridge constant set to 0.05, for the three parameter estimation period lengths, 

are set out in Table 4.  The bias of the ridge strategies towards the equally weighted 

strategy is immediately apparent.  The MVP and 15% drift portfolios exhibit growth 

rates and volatility similar to those of the equally weighted portfolios when d is set at 

5%.  The equally weighted portfolio, the MVP portfolio and the 15% drift portfolio 

each produced a rate of growth of a little above 12.5%p.a., with an associated 

volatility of about 15.5% regardless of the length of the estimation period.  In fact the 

performance of all four strategies, including the growth strategy, appears to be 

relatively independent of the length of the estimation period for the ridge portfolios. 

The short-sales allowed growth portfolios, whose weights were estimated with a 

ridge factor of 0.05, were much better behaved than their zero ridge factor 

counterparts.  The growth strategy portfolios outperformed the other benchmarks by 

more or less than 7%pa depending on the length of the estimation period.   
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Figure 5: Short -sales Allowed Aggregate Portfolio Growth 
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Figure 5 shows the extent of the superior performance by the short-sales allowed, 

ridge constant = 0.05, 4-year estimation period, portfolio over the 25 years of the data 

set.  It should, however, be noted that high growth has come at the cost of high 

volatility.  The volatility of the ridge growth portfolio was more than double that of 

the benchmark portfolios.  

 

The short-sales allowed growth portfolio strategy results, while of interest, are 

largely academic, as the presence of short-sold shares in the portfolios of either 

professional or retail investors is not typical.  An analysis of the results of growth 

portfolios where short-selling is not allowed will provide a more practical test of the 

growth investment strategy.   

Short-sales not allowed growth portfolios  

While the short-selling of stock in most equity markets, including US, is allowed, 

it is not typical.  Trialling growth optimal portfolios where a no short-sales restriction 

- 
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is imposed on portfolio weights, is a test of a more realistic strategy.  The results from 

testing no short-sales growth portfolios are set out in Table 5. 

The no short-sales growth portfolio performances are impressive.  The statistics 

recorded in Table 5 show that the classic no short-sales, non-ridge (ie d=0), estimator 

produces portfolio growth rates in excess of 20%pa and up to 31%pa, depending on 

the length of the input estimation period.   

Table 5: No Short-sales Allowed Portfolio Strategy Growth Rates 

  

Equally 

weighted 
  

“Classic” (d=0.00) strategies Ridge (d=0.05) 

MVP 15% drift Growth MVP 15% drift Growth 

Estimation period = 3 years  

Average 13.64% 10.33% 11.17% 25.27% 12.54% 12.93% 21.56% 

Volatility 16.22% 13.90% 14.43% 30.93% 15.42% 15.63% 24.51% 

Estimation period = 4 years  

Average 13.51% 10.09% 10.98% 31.54% 12.58% 12.85% 22.27% 

Volatility 16.27% 13.57% 13.98% 31.61% 15.42% 15.72% 24.19% 

Estimation period = 5 years 

Average 13.21% 9.56% 12.10% 26.53% 12.40% 13.94% 20.62% 

Volatility 16.16% 13.71% 14.30% 32.38% 15.39% 15.63% 23.79% 

 

The aggregate growth for the 2-year, 3-year and 4-year estimation period growth 

portfolios is depicted in Figure 6.  The extent to which the growth portfolios outpaced 

the benchmark portfolios is clearly evident.  The growth portfolios’ performance is 

even more impressive when stated in dollar terms.  One dollar invested in the no 

short-sales, 3-year, 4-year and 5-year estimation period, growth optimal portfolio 

strategy in April 1977 would have returned $553.89, $2,657.89 and $759.59 

respectively at the end of April 2002.  These figures grossly exceed the returns on the 

equally weighted portfolios for the 3-year, 4-year and 5-year estimation periods of 

$30.25, $29.29 and $27.19 respectively. 

Figure 6 charts the accumulation of growth for the classic and the ridge 4-year 

estimation period, short-sales not allowed, growth investment strategies over the 25-

year period.  It is clearly apparent in Figure 6 that the classic strategy consistently 
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produces accumulated growth which is more than double that of the benchmark 

equally weighted portfolio.  It is equally apparent from Figure 6 that the ridge growth 

strategy, d=(0.05), produces a rate of growth that falls between those of the classic 

growth strategy and the equally weighted portfolio. 

Figure 6: Short-sales Not Allowed Aggregate Growth Rates  
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The impressive performance of the classic, no short-sales growth strategy begs 

further analysis.  It is clear from Table 5 that the growth-oriented strategies, while 

having considerably higher growth rates than the benchmark strategies, also have 

much higher volatility than the benchmark MVP, 15% growth and equally weighted 

strategies.  Regardless of the length of the estimation period, the direct relationship 

between growth and volatility is clearly evident as Table 5 shows.  The evidence 

shows that no single investment strategy clearly dominates any other strategy.  

Indeed, the results of this study provide strong support for what Luenberger (1998) 

calls the log mean-variance model.   

Low-growth portfolios are associated with low volatility and high-growth 

portfolios are associated with high volatility.  The point is, however, that regardless of 
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the cost in terms of volatility, the portfolios designed for maximal growth did produce 

quite remarkable rates of growth.  It is worth investigating the source of this growth. 

Table 6: No Short-sales, 4-year Estimation Period, Portfolio Properties. 

Input estimation 

period 

 

Portfolio type 

 

  

Average 

growth 

rate 

 

Volatility 

of growth 

rate 

Average 

portfolio 

length 

Average no 

of included 

assets 

Average 

turnover of 

assets 

 

Equal 

weights  13.51% 16.27% 1.00 26.58 0.43% 

Classic no short-sales 

growth portfolios 

(d=0.00) 

 

MVP 10.09% 13.57% 2.57 9.04 9.98% 

15% drift 10.98% 13.98% 2.43 8.90 13.28% 

Growth 31.54% 31.61% 4.70 1.56 13.29% 

Ridge no short-sales 

growth portfolios 

(d=0.05) 

  

MVP 12.58% 15.42% 1.05 26.64 4.25% 

15% drift 12.85% 15.72% 1.21 23.92 9.91% 

Growth 22.27% 24.19% 2.59 7.74 12.54% 

From here on, the analysis of results is restricted, for the sake of brevity, to the 4-year estimation 

period.   

 

It is insightful to examine the average portfolio length and average number of 

included assets in the no short-sales growth optimal portfolios.  The length of a no 

short-sales allowed portfolio is inversely indicative of its “diversity”.  The length of a 

no short-sales, 25-stock portfolio can take values between one and five.  The 

maximum portfolio length of 5 is achieved, for any 25-stock portfolio, when 100% of 

portfolio value is held in a single stock.  At the other end of the spectrum is the 

maximally diversified, equally weighted portfolio with unit length.   

 

Table 6 shows that the “classic” no short-sales allowed, growth optimal portfolio 

with an average length of 4.70, is at the lower end of the diversity spectrum.  

Moreover, Table 6 shows that this portfolio contains on average only 1.56 assets in 

each period.  Further, Figure 7, which shows the distribution of the number of assets 

held in each period, reveals that for the majority of the 300 monthly periods, the no 

short-sales growth optimal portfolio consisted of a single asset.   
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Table 7: Growth Portfolio Disaggregated Growth 

Stock Classic d=0.00) Ridge d=0.05 

 

No. of 

inclusions 

Growth while 

included (%pa) 

Growth while 

excluded 

No. of 

inclusions 

Growth 

while 

included 

Growth 

while 

excluded 

AA 4 -47.5% 13.2% 50 3.2% 14.2% 

AXP 1 -105.8% 14.5% 118 18.1% 11.6% 

BA 44 27.8% 10.8% 97 9.7% 15.1% 

C 12 -25.0% 18.3% 109 22.6% 13.1% 

CAT 2 32.9% 7.0% 47 13.7% 6.0% 

DD 0  11.9% 33 -14.2% 15.1% 

DIS 33 37.9% 12.1% 76 27.7% 10.6% 

EK 0  6.0% 33 1.1% 6.6% 

GE 0  13.4% 66 11.8% 13.9% 

GM 0  8.7% 40 6.8% 9.0% 

HD 82 27.4% 28.6% 123 26.6% 29.4% 

HON 2 27.3% 9.6% 60 7.5% 10.2% 

HWP 5 33.8% 10.6% 95 13.3% 9.8% 

IBM 5 7.2% 6.7% 90 13.4% 3.9% 

INTC 58 21.3% 28.1% 118 23.4% 29.0% 

IP 0  8.3% 12 -42.6% 10.4% 

JNJ 0  17.4% 79 16.7% 17.7% 

JPM 5 4.2% 12.1% 59 23.8% 9.0% 

KO 0  17.5% 154 21.2% 13.5% 

MCD 0  13.6% 77 19.1% 11.7% 

MMM 0  12.9% 3 -12.8% 13.2% 

MO 0  15.6% 117 18.6% 13.7% 

MRK 28 19.3% 16.9% 115 11.9% 20.4% 

MSFT 75 15.3% 40.8% 145 28.4% 40.1% 

PG 0  12.1% 1 29.0% 12.0% 

SBC 0  14.4% 25 1.2% 15.6% 

T 0  2.2% 2 -42.9% 2.5% 

UTX 8 -1.3% 14.4% 109 3.1% 20.2% 

WMT 104 30.3% 28.2% 241 29.6% 26.0% 

XOM 0  10.4% 27 10.9% 10.4% 

The statistics in the table are for stocks included in no short-sales, growth optimal portfolio 

strategies, employing a 4 year estimation period 

 

Table 7 sets out statistics relating to included stocks in a growth optimal strategy 

over 25 years.  Only 16 of the 30 stocks were ever included in the classic growth 

strategy.  Of these stocks only 9 were included for 12 months or more.  Home 

Deposit, Intel, Microsoft and Walmart were included in the classic growth portfolio 

for 50 months or more.  The ridge growth strategy was more inclusive of assets.  

Twenty of the 30 assets were included for 50 months or more.   
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Table 7 sets out figures for each asset’s growth, separated into the growth 

generated while the asset was included in growth portfolios and the growth generated 

while the asset was excluded from growth portfolios.  There is no evidence that the 

growth generated while an asset is included in growth portfolios is systematically 

greater than the growth generated while the asset is excluded from growth portfolios.  

It can be concluded that the superior performance of growth portfolios comes not 

from their capacity to include assets during periods of high growth, but rather from 

their propensity to generally include high-growth assets and to exclude low-growth 

assets. 

Figure 7: Distribution of the Number of Assets Held in Growth Portfolios 
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Increased transaction costs are a practical consideration for any strategy that 

results in the distribution of portfolio funds amongst a small number of assets.  

Transaction costs will be significant if a strategy requires the flip-flopping of large 

asset weights from one asset to another.  One can see that this is the case to a degree 

with the no short-sales allowed classic growth portfolios.  Table 6 shows that the 

maintenance of this growth optimal portfolio strategy would have required, on 

average, a turnover of stock of about 13% per month.  The transaction costs 
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associated with any strategy that turns over 13% of a portfolio per month are 

considerable, and will significantly lower the effective rate of portfolio growth.  For 

example, the cost of portfolio adjustment would be 3.1%pa if a round transaction cost 

was 2% of traded value. 

The ridge estimator was employed to produce short-sales allowed portfolio 

weights that were numerically stable and produced acceptable gearing levels.  The 

justification for this use of a ridge estimator does not have the same force for short-

sales not allowed portfolios.  The no short-sales restriction considerably reduces the 

dimension of the covariance matrix that is inverted to produce portfolio weights.  

Classic short-sales not allowed portfolio weights are numerically stable and are by 

definition not geared.  There is, however, an argument for the use of a ridge growth 

estimator in the short-sales not allowed context, on the grounds that it produces more 

diversified, less risky portfolios.   

We have computed no short-sales, ridge, growth optimal portfolios using a ridge 

constant of 0.05 to facilitate comparison with the short-sales allowed results.  

Predictably, Table 6 reveals that the no short-sales allowed, ridge, growth portfolio 

performance lies somewhere between the performance of the classic growth optimal 

portfolio and that of the equally weighted portfolio.  The no short-sales allowed, 

ridge, growth portfolio contains more assets (see Figure 7), is less risky and has a 

lower growth rate than the classic growth portfolio.   
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Figure 8: Classic and Ridge Portfolio Performance 
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Conclusion 

Growth optimal portfolio investment strategies were applied to a 25-year data set 

of 30 US companies.  Initial statistical investigation of data provided no reason to be 

optimistic about the successful application of the growth techniques.  The growth 

optimal technique assumptions of normality and stability were violated by the nature 

of the US data.  Returns on the 30 stocks were found to be skewed and leptokurtic and 

to have time-varying variances and covariances.  However, the growth optimal 

techniques performed well, despite the assumptions not being met.   

The growth optimal portfolios, both short-sales allowed and short-sales not 

allowed, produced rates of growth that exceeded those of the benchmark portfolios.  

The classic no short-sales allowed, growth optimal portfolios produced impressive 

rates of growth that were more than double those of the benchmark portfolios.  

Analysis of the structure of these portfolios showed that, at any point in time, they 

consisted of a very small number of included stocks.  The secret of the success of 

Growth 

15% drift 

Equally weighted 

MVP 
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these portfolios appears to lie in their ability to select a few stocks during their high 

growth periods. 

This study details the successful inclusion of a variant of ridge regression as the 

basis of a growth optimal strategy.  The ridge growth optimal technique facilitated 

production of numerically stable weights for short-sales allowed portfolios.  When 

short-sales were not allowed, the use of the ridge estimator produced more diversified 

growth portfolios.   

There are two possible answers to the question of why the growth optimal 

techniques performed well in the face of non-normality and instability in the data.  

The first reason, which cannot be dismissed, is that the techniques worked well on this 

particular data set by pure chance alone.  The second explanation is that the 

assumptions of normality and stability are not necessary to the success of the 

technique.  While the model used in this paper assumes normality of the Ito process, it 

may be that growth investment strategy is equally efficacious under alternative 

stochastic processes that allow kurtosis.  Why does the investment strategy cope with 

distributional instability?  Perhaps the use of a moving window estimation process 

may counter the problems arising from the instability of mean growth rates and 

growth rate covariances. 

This study details the successful application of growth optimal techniques.  There 

is, however, no evidence of the general superiority of growth optimal techniques.  

Growth portfolio strategies are also high volatility strategies.  While the results of an 

empirical study such as this are necessarily limited to the specific market and to the 

specific time-frame of the study, the point that this investigation makes is, however, 

that regardless of their other properties and potential drawbacks, the portfolios 

designed for maximal growth did in fact produce quite remarkable rates of growth.  
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Endnotes 

                                                 

1
 Dividend adjusted prices were downloaded from the website http://chart.yahoo.com/. 

2
 Most portfolio analysts would label the growth variable, g, as a continuously compounded return.  

This difference in terminology opens the door to possible confusion.  Equations (1) and (2) show that 

the expected return over a very short period of time is t.  However, over a longer period of time the 

expected return is ( - 
2
/2) t.  As Hull (2000), pp240-241 notes, “the term expected return is 

ambiguous.  It can refer to either  or  - 
2
/2”.  We will try to avoid this confusion by using the term 

drift to refer to short-period return, , and using the term growth to refer to long-period return,  -  

3
  The skewness and kurtosis tests are based on the following.  For a normally distributed random 

variable, x, the skewness coefficient, 33
1 /])x[(E   estimated from a sample of size n, is 

distributed as )n/6,0(N1  .  The coefficient of kurtosis, 44
2 /])x[(E  is distributed as 

)n/24,3(N2  , where E is the expectation operator,  is the mean and  is the standard deviation.  

The Jacque-Berra statistic, J, where: 
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4
 See Pearson (1969) p 219.  An example of the use of M to test equality of covariance matrices can be 

found in Morrison (1976) pp 252-253 (note, however, the error in Morrison’s equation (2)).  

5
 Judge (1985) provides an exhaustive review of ridge estimators.   

http://chart.yahoo.com/

