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Any investment strategy that maximises portfolio growth has an intuitive appeal for 

both the professional and non-professional investor.  This paper investigates the 

structure and properties of growth oriented portfolios using a matrix algebra approach.  

Data on the returns of five Australian listed companies are used in the paper to 

provide specific illustrations of growth portfolio properties. 

 

This paper highlights the nexus between growth optimal portfolios and Markowitz 

mean-variance portfolios.  Growth portfolios are shown to be Markowitz efficient 

portfolios.  The paper contrasts the properties of maximum growth portfolios with 

those of minimum variance portfolios. 

 

Finally, following Long (1990) we derive the growth optimal portfolio equivalent of 

the capital asset pricing model with the growth optimal portfolio acting as a pricing 

numeraire.   
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Introduction 

Any strategy that maximises the rate of growth of the value of an investment has an 

obvious and intuitive appeal to both the naïve and the professional investor.  In an 

early application, Kelly [1956] proposed maximising the expected exponential growth 

rate of value of investment capital as an investment strategy in a gambling setting.   

 

The so called Kelly system suggested gamblers allocate their wealth between a risk 

free asset, cash, and a risky, but favourable, gambling opportunity in a way that 

maximised the expected growth of capital.  It has been shown [Breiman 1961] that the 

Kelly betting system is asymptotically optimal in that it minimises expected time to 

achieve any fixed value of terminal wealth and that it maximises rate of increase of 

wealth.  Much that is proposed in the Kelly gambling system has direct application in 

a more traditional investment environment. 

 

Let us examine the growth characteristics of more traditional investments.  It is well 

known that if the passage of an asset price, S, through time, t, is governed by 

geometric Brownian motion (generalised Weiner process) 
1
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where r is the rate of drift and z is a standard Weiner process, then the expected 

growth of the asset, G, over time t, can be expressed as: 
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The combinatorial properties of normal random variables dictate that if the value of n 

assets follow a geometric Brownian motion, the value of a combination of these 

assets, Sp, defined by a portfolio weights vector, w
T
 = (w1, …, wn) will also be 

characterised by geometric Brownian motion
2
 

 

dz)t(Sdt)t(Sr)t(dS ppppP   (3) 

 

and will have an expected portfolio growth rate per unit of time, gp, where: 

 

                                                 
1
 For example see Luenberger D.G. (1998) pp 310-313. 

2
 It should be acknowledged that there is a wealth of evidence to suggest equity returns, while they are 

independent, are not normally distributed.  In particular, many equity returns exhibit strong kurtosis.  

(See Rachev and Mittnik (2000), pp 605-616 for a summary of alternative distributional models.)  It 

ought to be noted that most of the results presented in this paper do not rely on normality but rather 

only require that asset returns have finite variances. 
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where is an nxn matrix of variances and covariances and r is a “returns” vector of 

individual expected drift rates per unit of time, r
T
=(r1,  … , rn).

 3
   

 

Hakkansson (1971) and Luenburger(1991) have justified the use of growth optimal 

portfolios on the basis of investor expected utility maximisation.  It is comforting to 

know that there is a sound theoretical basis for advocating a growth portfolio 

investment strategy.  However, the Kelly view, that maximising investment growth of 

value is a self-evident superior strategy, probably resonates more with the investment 

sector. 

 

The application of the Kelly system to an n-asset investment portfolio environment, 

where a risk-free asset may or may not exist and where returns are normally 

distributed, is straightforward.  Investors adhering to the Kelly method choose asset 

weights, w, that maximise portfolio expected growth and by so doing construct 

portfolios that at once: 

 

1. maximise expected terminal value Sp(T) for any time T , 

2. minimise the expected time required for terminal value to reach any 

specified threshold value,. 

3. are always more likely to have a value in excess of any other portfolio at 

any point of time during the investment period.  

 

The purpose of this paper is not to justify the use of growth focussed portfolios, but 

rather to explore the properties of growth portfolios.  The Markowitz (1952) mean-

variance approach to portfolio selection concentrates on portfolio expected return and 

variance of return.  The contribution of this paper is to highlight to results relating to 

another important of portfolio characteristic namely, portfolio expected growth.  In 

doing so we expose the nexus that exists between growth portfolios and Markowitz 

mean-variance efficient portfolios. 

Growth – a Key Portfolio Characteristic 

The expected growth of any portfolio is another important portfolio characteristic like 

the more familiar portfolio expected return and the variance of portfolio return.  

Assuming a Weiner asset process, portfolio expected growth is a simple function of 

these latter two portfolio characteristics being equal to the portfolio expected return 

less half portfolio variance.   

 

                                                 
3
 The expected return over a very short period of time is t.  However, over a longer period of time 

the expected return is  - 
2
/2.  As Hull (2000), pp240-241 notes, “the term expected return is 

ambiguous.  It can either refer to  or  - 
2
/2”.  When the term expected return ( or symbol r) is used 

in this paper it is in reference to the drift term, , in a generalised Weiner process.  
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Price data on five Australian companies is employed to illustrate some of the 

properties of growth portfolios.  The companies are Australian and New Zealand 

Banking Ltd. (ANZ), Westpac Banking Corporation (WBC), National Australia Bank 

(NAB), News Corporation (NCP) and BHP Billiton (BHP).  These companies are the 

five largest (by market capitalisation) Australian companies that continually traded 

over the data period of June 1980 to September 2001.  Figure 1 records the growth of 

the five stocks over the two decade period.  Further statistics relating to the five 

companies is set out in the appendix.    

 

“Efficient” growth portfolios may be derived in the same way that efficient variance 

portfolios are derived within a Markowitz framework.
 4
  In a Markowitz framework 

portfolio variance is minimised subject to a constraint that portfolio expected return is 

equal to an arbitrary constant. 

  

In a growth framework, portfolio expected growth is maximised subject to a 

constraint that portfolio expected return is equal to an arbitrary constant.  That is, the 

expected portfolio growth rate, gp= p-
2

p/2, is maximised subject to p equalling 

some constant, k.  The dual of this problem is the minimisation of portfolio variance, 


2

p, subject to portfolio return being set to the same arbitrary constant, k.  

Examination of the dual of the growth problem reveals that efficient growth portfolios 

are also Markowitz, mean variance efficient portfolios with individual growth 

constants, I, substituting for Markowitz average return.   

 

Figure 1: Aggregate Growth 
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The point was made above that growth portfolio analysis is firmly set within the 

portfolio mean variance framework.  This is illustrated in Figure 2.  Figure 2 contains 

three plots.  The two quadratic “minimum variance” lines represent the expected 

return-variance trade-off for both short-sales allowed and short-sales not allowed, 

                                                 
4
 In the analysis follows, portfolios that focus on growth while controlling other factors are henceforth 

termed growth efficient portfolios, and portfolios that have the absolute maximum portfolio expected 

growth, regardless of other factors, are termed growth optimal portfolios (GOP). 



  Page- 4 - 

 

minimum variance portfolios consisting of the five Australian equity assets listed in 

Table 1.  The 22.5
o
 straight line in Figure 1 plots r-

2
/2. 

 

Figure 2: Return and Risk 
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The vertical distance between the mean-variance portfolio return and the r = 
2
/2 line 

represents the expected growth of an efficient portfolio. 

 

Short sales allowed, efficient growth portfolios are asset weight vectors that maximise 

portfolio growth subject to two restrictions (1) that the weights vector sums to unity 

and (2) that portfolio expected return is equal to some arbitrary constant, k.  The two 

constraint equations have a matrix equation representation: 
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where B is a (2xn) matrix of 1s and expected returns, ri , i = 1 ....n , and b is a (2x1) 

vector of 1 and the desired minimum variance return, k.  Similarly, selection of an 

efficient growth portfolio can be reduced to the identification of a weights vector, w, 

that maximises 

 

wΩwrw
T

2

1Tg   (6) 

 

subject to the restrictions in (5).  Inspection of (5) and (6) reveals that the problem 

reduces to one of minimising portfolio variance, the second term on the rhs of (6), 

subject to the restrictions in (5).   

 

Short sales allowed expected growth rate 

Short sales not allowed expected growth rate 
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Minimisation of 
2

p=w
T
 w, subject to B w = b, has the solution:

5
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11 1TT
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  (7) 

 

where wk is the portfolio which, of all portfolios having an expected return of k, has 

the least possible portfolio variance.  This variance is: 
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Simplifying (8) by defining a (2x2) matrix 11
)BΩ(BA
 T  and enumerating the 

contents of b, produces: 
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Equation (9) is a quadratic expression relating the variance of the minimum variance 

portfolio to the portfolio expected return.  The expected growth of this portfolio can 

thus be expressed in terms of the arbitrary portfolio return constant, k as 
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Equation (10) shows that growth efficient portfolios are a quadratic function of 

portfolio return.  The quadratic relationship between portfolio expected growth and 

portfolio return is evident in Figure 3, which shows the relationship for both short 

sales allowed and short sales not allowed portfolios constructed using the application 

data. 

 

Another property of efficient growth portfolios is that expected growth is a quadratic 

function of expected return.  The quadratic relationship between growth and return, 

evident in equation (10), is depicted for the Australian equities data in Figure 3. 

 

                                                 
5
Differentiating the Lagrange function, )bBw(w'wL   produces: 
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solving the above equation by partitioned inversion produces a solution for w. (see Golberger,  (1964).  
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Figure 3: Quadratic growth 
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Each of the portfolios that underlie the plots in Figure 3 is on a maximum growth 

frontier as they all have maximal growth given a particular portfolio return, k.  The 

return associated with the absolute, maximum growth (growth optimal), short sales 

allowed, portfolio point can deduced by differentiating equation (10) 

 

ka)a1(
kd

gd
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k   (11) 

 

setting the derivative to zero produces the return, kopt, associated with the growth 

optimal portfolio: 
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Where, kMVP is the expected return attached to the minimum variance portfolio
6
. 

 

Using the application data, 11
)BΩ(BA
 T  matrix is evaluated as: 
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Thus kGOP = (1+0.4089)/3.1649 = 44.52% and can be contrasted with the Markowitz 

absolute minimum variance return, kMVP= 4089.0 /3.1649 =12.91% 

 

It can be seen from Figure 3 that the application data yields a corner solution for the 

short sales not allowed maximal growth portfolio
7
.  The short sales not allowed 

growth optimal portfolio consists of 100% of a single asset, NCP.  Of course this is 

                                                 
6
 Setting the first differential of equation (14) to zero produces kMVP =-a2,1/a2,2. 

7
 Empirical short sales not allowed portfolios were obtained using Microsoft Excel’s solver module. 
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not a general result portfolio and is a direct result of the small number of assets in the 

application data set.  However it does illustrate an important aspect of the construction 

of growth optimal, short sales not allowed, portfolios, namely that the risk reduction 

benefits of diversification are not necessarily sufficient reason to justify the inclusion 

of additional assets.  Taking the highest yielding asset as a minimal, short sales not 

allowed, growth efficient portfolio starting point, the inclusion of an additional, lower 

yielding asset is only justified when the benefit of additional diversification exceeds 

the reduction in overall portfolio yield that accompanies the inclusion of the lower 

yielding asset.  

 

A growth-variance frontier can be drawn in risk space like the more familiar 

Markowitz mean-variance frontier.  A growth-variance frontier for the Australian 

equity data is set out in Figure 4.  Figure 4 exhibits a “surfboard skeg” shape typical 

of growth-variance frontier plots. 

 

Figure 4: Growth, risk curve 
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We can gain some insight into the individual asset structure of growth portfolios by 

defining a (nx2) vector, 1T1T1 )(  BΩBBΩD and by substituting this term in 

equation (11).  This enables us to express individual asset weights as functions of k: 
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where d . i is the i
th

 column of D. 

 



  Page- 8 - 

 

Rewriting equation (13) shows that the weight of an individual asset in an efficient 

growth portfolio wk is a linear function of k.  

 

2,i1,ii dkd w  (14) 

 

Thus the weight of an individual asset in a minimum variance portfolio, is either an 

increasing or decreasing linear function of portfolio return.  This phenomenon is 

illustrated in Figure 5 for both short sales allowed and short sales not allowed growth 

portfolios.   

 

Figure 5:  Growth portfolio weights 
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Note that the short sales not allowed growth efficient portfolios are simply a series of 

short sales allowed growth efficient portfolios with various numbers of included 

assets.  In other words, the set of short sales not allowed growth portfolios consists of 

a number of sub-sets of short sales allowed growth portfolios. 
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Growth portfolios, like mean-variance portfolios obey a “two fund” rule.  That is, all 

growth efficient portfolios may be generated from a linear combination of two other 

efficient growth portfolios.  Consider two efficient growth portfolios having arbitrary 

expected returns k1 and k2.  A third growth portfolio constructed by combing a 

portion, c, from the first portfolio and (1-c) from the second portfolio is also a growth 

efficient portfolio. 
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Growth Optimal Portfolio Structure 

Selecting a weight vector, w, that maximises the expected portfolio growth, 

wΩwrw
T

2

1Tg  , subject to unity sum constraint on the weights, identifies the 

structure of the growth optimal portfolio.  Differentiating the Lagrangrean expression:  
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where ι is a vector of units.  Setting the equations in (16) to zero to satisfy the first 

order conditions and rearranging the equations produces: 
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The solution to (17) can be expressed as: 
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where the E
i,j

 are the elements of the inverse of the left hand matrix in (17).  Thus, the 

GOP weights, w*, vector has the following structure: 
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Naturally there is some predictable structure evident in the growth optimal portfolio 

equation (19).   

 

It is easily shown that that sum of the elements of each column of E
1,1

 is zero and that 

the sum of the E
1,2

 vector equals unity.  These two results guarantee that the weights 

vector, w, sums to unity as required.  The short sales allowed and the short sales not 

allowed absolute maximum growth portfolio weights ( w*ssa, and , w*ssns, 

respectively) for the application data are: 

 









































































00.0

00.1

00.0

00.0

00.0

and

33.0-

27.1

09.1

71.1-

66.0

*w

*w

*w

*w

*w

ssna

BHP

NCP

NAB

WBC

ANZ

ssa *w*w  

 

E
1,1

 is a symmetric, positive semi-definite matrix.
8
  Thus the diagonal elements of E

1,1 

are positive and the off-diagonal elements in any column or row of E
1,1 

are net 

negative.  These properties are evident in the empirical, E
1,1 

of the example: 
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The positive diagonal elements of E
1,1

 guarantee that any increase in the growth rate 

of any individual asset ri results in an increase in the weighting of that asset in the 

GOP, as it can be seen from (19) that: 
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Growth Optimum Portfolio Characteristics 

Any portfolio has three important characteristics.  These are the portfolio expected 

return, portfolio variance and portfolio expected growth.  The expected return 

associated with a growth optimal portfolio can be expressed as: 

 

)(rr 2,11,1TT
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The variance of a growth optimal portfolio has a relatively simple expression.  

Recognising that 0EE  2,11,1 , 1,11,11,1
EEE   and d/12,12,1 EE , where d is the 

sum of elements of the inverse of the covariance matrix, ie ιΩι
1Td   

                                                 
8
 See Appendix 
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The GOP portfolio rate of growth: 
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The portfolio characteristics for the application data are set out in Table 2. 

 

Table 2: GOP portfolio characteristics 

 Short sales allowed Short sales not allowed 

Expected return 44.52% 33.53% 

Variance 35.55% 21.30% 

Volatility 59.62% 46.15% 

Growth 26.74% 22.87% 

Comparison with MVP portfolio 

The absolute minimum variance portfolio (MVP) results from the removal of the 

expected return equation from the restriction equation (5).  The removal of the 

expected return restriction reduces the restriction equation Bw=b to 
T
w=1.  

Substituting the reduced restriction equation into equation (7) produces the vector of 

absolute minimum variance portfolio weights, w
o
: 

 

2,1

1T

1
ow E

ιΩι

ιΩ






 (26) 

 

Some simple algebra, using the structure of w
o
, produces formulae for MVP expected 

return, r
o
, MVP variance, 

2
o, and MVP expected growth, g

o
.  The formulae for these 

MVP portfolio characteristics are set out in Table 3. 

 

Table 3: A comparison of MVP and GOP portfolio characteristics 

 MVP portfolio GOP portfolio 

Weights 2,1o
Ew   2,11,1

ErEw*   

Expected return 2,1Tor Er  )(r 2,11,1T
ErEr*   

Variance 
d

12

0   d

11,1T

*  rEr
2

 

Growth 
d

12,1Tog  Er  
d

1

2

1
)(g 2,11,1T  EEr*  

 

It is evident from Table 3 that there are many common elements in the portfolio 

characteristic formulae for the minimum variance and the growth optimal portfolios.  

This is not particularly surprising as both portfolios are Markowitz mean- variance 
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efficient portfolios and it is well known that every mean-variance efficient portfolio 

can be generated as a linear combination of two mean-variance efficient portfolios. 

 

The differences between the characteristics of the growth optimal portfolio and its 

equivalent minimum variance portfolio have both simple and symmetric structure.  

Take, for example, the difference between the expected GOP return, r*, and the 

expected MVP return, r
o
 : 

 

0rE

EErE





1,1T

2,1T2,11,1To

r

r)(r*rr
 (27) 

 

The expected return on the growth optimal portfolio always exceeds that of the 

minimum variance portfolio as E
11

 is positive semi-definite.   

 

The gap between the GOP and MVP variances is exactly the same as that between the 

respective expected returns.   

 

0rE

rE



 

1,1T

1,1To

r

r*
d

1

d

1

 (28) 

 

The equality of the excess return and variance is illustrated in Figure 6, which shows 

that both the MVP and GOP lie on a circle of radius rE
1,1Tr  

 

Figure 6:  MVP and GOP Circle 
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As both the differences between the expected returns and the variances of the growth 

optimal and minimum variance portfolios are given by the quadratic expression 

rE
1,1Tr , the difference in the growth rates of the two portfolios are thus equal to half 

of this.  

GOP 

MVP 

Short sales allowed frontier 



  Page- 13 - 

 

 

0rE

ErE



 

1,1T

2,11,1To

r

)(r*gg

2

1

d

1

d

1

2

1

 (29) 

The Inclusion of a Risk-Free Asset 

Much of the theoretical development of the discipline of finance has relied upon an 

assumption that a risk-free asset exists and can be included as an asset amongst other 

risky assets
9
.  A relevant question is: how are the properties of the GOP affected by 

the inclusion of a risk-free asset?   

 

Let us formally examine inclusion of a riskless asset, having return, rf, as the 

additional n+1
th

 asset added to a portfolio of n risky assets.  The proportion held in the 

riskless asset, wrf, is: 

 

w
T

n

1i
irf 1w1w 



 (30) 

 

where w is the vector of n risky asset weights.  It is convenient to define a simple 

transformation of the asset returns by subtracting the riskless rate from the original 

return: 

 

fi

~

i rrr   (31) 

 

Using this transformation, the return on the n+1 asset portfolio is expressed as: 

 

f

~T r rwr  (32) 

 

In order to maximise n+1 asset growth subject to portfolio return, rp, equalling k,  we 

define the Lagrangean expression: 

 

)r(rL k
~~TT
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~T  rwwΩwrw  (33) 

 

where fk

~

rkr  .  The solution to this problem is: 
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
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 
  (34) 

 

                                                 
9
 The existence of a riskless asset is problematical.  It is the author’s view that if one can accept that a 

riskless asset exists, one will almost certainly accept the more credible proposition that the tooth fairy 

is alive and enjoys a full life at the bottom of the garden.  
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where .
~1T~

e rΩr


  We shall show later that 
~

1
r

  is the n+1 asset absolute growth 

portfolio.  Hence the n+1 asset weights are a linear function of the GOP weights and 

the portfolio expected return k: 
 

GOP
f

k
e

rk
ww 







 
  (35) 

 

It is obvious from equation (35) that the weights are a linear function of the portfolio 

return k.  However, as expected the variance and growth rate associated with wk are 

quadratic functions of k:  

2

f

~ 2

k2

k )rk(
e

1

e


r
 (36) 

and 

2

f )rk(krg
e2

1

2
1 2

ppk   (37) 

Figure 7 contrasts, for the application data, the n asset, short sales allowed, risky 

asset, portfolio (5 assets) with the n+1 asset portfolio of 5 risky assets and a risk-free 

asset yielding 5%pa.  Note that there will always be a point of coincidence between 

the two portfolios with and without the risk-free asset.  This point occurs when the 

riskless asset naturally takes a weight of zero in the n+1 asset portfolio. 

 

Figure 7:  Inclusion of a Risk-Free Asset 
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It is apparent from equation (35) that the GOP is identified when the first term on the 

RHS of equation (35) takes the value unity, that is when: 

 

frek   (38) 

 

Thus the GOP value of k2 = e + rf = 48.48%+5%=52.48% in the case of the 

application data. 
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The Growth Optimal Pricing Formula 

The rate of growth of a portfolio consisting of n risky assets and one riskless asset can 

be set out as : 

wΩwrw
T

2

1

f

~T rg   (39) 

 

as wΩr
w




 ~

T
L

 

 

The GOP weights for the n risky assets are: 

 

~1* rΩw   and 


n

1i
irf w1*w  (40) 

 

Long [1990] highlighted the role of an n+1 asset GOP (includes a riskless asset) as a 

reference portfolio for the individual assets.  That is, it is possible to use the GOP as a 

numeraire portfolio to “price” the individual assets. 

 

The nx1 vector of covariances of the individual asset’s return with that of the GOP, 

i,GOP is: 

 

~

~1
GOP,i *

r

rΩΩwΩσ



 

 (41) 

 

or in terms of individual assets: 

 

fiGOP,i rr   (42) 

 

Equation (41) shows that an asset’s excess return over that of the riskless asset is 

equal to the covariance of the asset’s return with the return on the GOP.  Moreover, 

there is a relationship between an asset’s excess return and the GOP excess return.  

We can show that this relationship parallels the CAPM equations that relate asset 

excess return to the market excess return. 

 

Let us define a GOP beta vector as: 

 

2

GOP

~

2

GOP
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i

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


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β  (43) 

 

Now 
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as 
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GOP rr*r  
rΩrrw  (45) 
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Rearranging equation (43) produces 

 

)rr( fGOP

~
 βr  (46) 

 

or in terms of the individual assets 

 

)rr(rr fGOPifi   (47) 

 

The short sales allowed weights of the assets in the GOP and the GOP betas for the 

application data are set out in Table 4
10

 

 

Table 4: GOP weights and betas 

  Return Variance Growth 

GOP 

Weights beta 

ANZ        14.0% 6.3% 10.8% 82.6% 0.19 

WBC        11.7% 6.0% 8.7% -156.1% 0.14 

NAB        15.3% 5.5% 12.5% 147.3% 0.22 

NCP        33.5% 21.3% 22.9% 123.0% 0.60 

BHP        12.7% 6.7% 9.4% 3.7% 0.16 

Riskless 5.0% 0.0% 5.0% -100.5% 0.00 

GOP 52.48% 47.48% 28.74%   1.00 

 

Figure 8 illustrates the linear relationship existing between asset return and asset GOP 

beta. 

 

Figure 8:  Asset Return v GOP beta  
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10

 As the short sales not allowed GOP consists of 100% NCP, we have not included the short sales not 

allowed GOP equivalent figures as results have little meaning. 

NCP 
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Summary 

Expected rate of growth, like expected return and variance of return, is a significant 

characteristic of any investment portfolio.  This paper has examined in detail the 

structure and nature of growth oriented portfolios.  The analysis of the growth 

properties of investment portfolios was undertaken within the Markowitz minimum 

risk framework, and growth “efficient” portfolios were shown to be also mean-

variance efficient portfolios.  The structure of the growth optimal portfolio was 

compared and contrasted with its equivalent minimum variance portfolio.  Finally, we 

derived a growth version of CAPM.  Asset expected return was shown to be a linear 

function of growth beta. 
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Appendix 

ONE 

Growth Application Data 

Price data on five Australian companies are employed to illustrate some of the 

properties of growth portfolios.  The companies are Australian and New Zealand 

Banking Ltd. (ANZ), Westpac Banking Corporation (WBC), National Australia Bank 

(NAB), News Corporation (NCP) and BHP Billiton (BHP).  These companies are the 

five largest (by market capitalisation) Australian companies that continually traded 

over the data period of June 1980 to September 2001.  Return, volatility and 

correlation structures for the five companies are set out in table below. 

 
Australian Company Return Statistics 

Returns (%pa) 

 ANZ        WBC        NAB        NCP        BHP        

Implied  13.97% 11.67% 15.25% 33.53% 12.70% 

Growth   10.82% 8.69% 12.51% 22.88% 9.36% 

Volatility (standard deviation %pa) 

 ANZ        WBC        NAB        NCP        BHP        

 25.14% 24.43% 23.41% 46.15% 25.86% 

Covariance (%pa) 

 ANZ        WBC        NAB        NCP        BHP        

ANZ        6.23% 4.50% 3.84% 4.03% 2.81% 

WBC        4.50% 5.90% 4.09% 4.80% 2.78% 

NAB        3.84% 4.09% 5.35% 4.32% 2.45% 

NCP        4.03% 4.80% 4.32% 20.77% 4.86% 

BHP        2.81% 2.78% 2.45% 4.86% 6.47% 

Correlation 

 ANZ        WBC        NAB        NCP        BHP        

ANZ        1.00 0.75 0.68 0.35 0.42 

WBC        0.75 1.00 0.73 0.43 0.44 

NAB        0.68 0.73 1.00 0.40 0.43 

NCP        0.35 0.43 0.40 1.00 0.41 

BHP        0.42 0.44 0.43 0.41 1.00 
The statistics have been estimated from monthly data (June 1980 – September 2001) obtained 

from the Beacon service supplied by Reuters Australia  

 

TWO 

Positive semi-definiteness of A
1,1

 requires that for any vector, a: 
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As  is positive definite so is its inverse 
-1

 and thus it is suitable as a covariance 

matrix.  Choose a vector of random variables, y, such that it has covariance matrix 


-1

.  Consider two linear combinations of y, a
T
 y and 

T
.  Thus: 
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The Cauchy-Swartz inequality states that: 

 

)Y(Var*)X(Var)Y,Xvar(Co 2   

 

Thus it follows: 

 

ιΩι*a)Ωaι)Ω(a
1T1T21T (    

and thus: 
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THREE 

The growth rate g* of the maximum growth portfolio can be expressed as a function 

of the corresponding weight vector w*: 

 

****g T

2

1T
wΩwrw   

 

where 2,11,1
ErEw*  .   

 

 

Thus: 
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differentiating g* wrt r: 
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recognising that 0Eι 1,1T , 12,1T Eι  and )T1,1
ιE-(IΩE

1,2  one can simplify the 

derivative to: 
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FOUR 

The derivation of the n+1 asset portfolio, including a riskless asset, having a return of 

k and maximum possible growth, proceeds as follows.  We define the Lagreangean 

expression: 
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where rf is the risk free rate, fk

~

rkr  , fi

~

i rrr   i=1,n.  Differentiating the 

Lagreangean produces: 
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The above equations can be expressed in partitioned matrix form as: 
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The solution wk to the above set of equations is: 
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